Effect of radiation on the Notch signaling pathway in osteoblasts.

نویسندگان

  • Bing Yang
  • Quan Tang
  • Janine Post
  • Hui Zhou
  • Xiao-Bin Huang
  • Xiao-Dong Zhang
  • Qin Wang
  • Yuan-Ming Sun
  • Fei-Yue Fan
چکیده

Notch signaling has been shown to be important in osteoblast differentiation. Therapeutic radiation has been shown to alter the skeletal system, yet little information is available on the changes in Notch signaling in irradiated osteoblasts. The purpose of this study was to analyze the effect of radiation therapy with 2 and 4 Gy on Notch signaling in osteoblasts. In order to assess the radiation damage on osteoblast differentiation, total RNA and protein were collected three days after exposure to radiation. The effects of radiation on Notch signaling at the early and terminal stages of osteoblastic MC3T3-E1 cell differentiation was analyzed by qRT-PCR and western blot analysis. Our study applied a previously established method to induce MC3T3-E1 cell differentiation into osteoblasts and osteoblast precursors. Our results showed that the expression of Notch receptors (Notch1-4), ligands (Jagged1, Jagged2 and Delta1), target of Notch signaling (Hes1) and markers (ALP, M-CSF, RANKL and OPG) were altered following 2 and 4 Gy of irradiation. The present research did not indicate a strong relationship between Notch1 regulation and suppression of osteoblast differentiation. We found Hes1 may play a role in the radiation effect on osteoblast differentiation. Our results indicate that radiated osteoblast precursors and osteoblasts promoted osteoclast differentiation and proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts

Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...

متن کامل

Gene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway

Objective(s): The prognosis of osteoporosis is very poor, and it is very important to identify a biomarker for prevention of osteoporosis. In this study, we aimed to identify candidate markers in osteoporosis and to investigate the role of candidate markers in osteogenic differentiation. Materials and Methods: Using Weighted Gene Co-Expression Network analysis, we identified three hub genes mig...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Investigating the inhibitory effect of miR-34a, miR-449a, miR-1827, and miR-106b on target genes including NOTCH1, c-Myc, and CCND1 in human T cell acute lymphoblastic leukemia clinical samples and cell line

Objective(s): microRNAs are small non-coding molecules that regulate gene expression in various biological processes. T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy accompanied with genetic aberrations and accounts for 20% of children’s and adult’s ALL. Notch signaling pathway dysregulation occurs in 60% of T-ALL cases. In the present study, we aimed to de...

متن کامل

Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation

Objective(s): NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2013